sábado, 1 de octubre de 2011

;; PUESTA A TIERRA

Introducción

Es bien sabido que la mayoría de los sistemas eléctricos necesitan ser aterrizados y que esta práctica probablemente se inició en los primeros días de los experimentos  eléctricos. Entonces, como ahora, la estática se descargaba por conexión a una placa que estaba en contacto con la  masa general de la tierra. La práctica ha continuado y se ha desarrollado progresivamente, de modo que tales conexiones a tierra se encuentran en casi todos los puntos en el sistema eléctrico.
Por puesta a tierra generalmente entendemos una conexión eléctrica a la masa general de la tierra, siendo esta última un volumen de suelo, roca etc., cuyas dimensiones son muy grandes en comparación al tamaño del sistema eléctrico que está siendo considerado.

 La puesta a tierra de instalaciones eléctricas está relacionada en primer lugar con la seguridad. El sistema de puesta a tierra se diseña normalmente para cumplir dos funciones de seguridad. La primera es establecer conexiones equipotenciales. Toda estructura metálica conductiva expuesta que puede ser tocada por una persona, se conecta a través de conductores de conexión eléctrica. La mayoría de los equipos eléctricos se aloja en el interior de cubiertas metálicas y si un conductor energizado llega a entrar en contacto con éstas, la cubierta también quedará temporalmente energizada.

FUNCION DE LA PUESTA A TIERRA

 La conexión eléctrica es para asegurar que, si tal falla ocurriese, entonces el potencial sobre todas las estructuras metálicas conductivas expuestas sea virtualmente el mismo. En otras palabras, la conexión eléctrica iguala el potencial en el interior del local, de modo que las diferencias de potencial resultantes son mínimas. De este modo, se crea una “plataforma” equipotencial.
Si una persona está en contacto simultáneamente con dos piezas diferentes de una estructura metálica expuesta, el conductor de conexión eléctrica debiera garantizar que la persona no reciba un choque eléctrico, haciendo que  diferencia de potencial entre los equipos sea insuficiente para que esto ocurra.
 El mismo principio se aplica en el interior de grandes subestaciones eléctricas, industrias y casas. En industrias, la conexión eléctrica de estructuras metálicas  expuestas garantizará normalmente que una falla eléctrica a la carcasa de la máquina no generará una diferencia de potencial entre ella y la estructura metálica puesta a tierra en una máquina adyacente. En la casa, la conexión eléctrica garantiza que si ocurriese una falla a la cubierta metálica de una máquina lavadora u otro electrodoméstico, cualquier persona que estuviese tocando en el momento de falla simultáneamente uno de estos equipos y el estanque metálico, no experimentaría un choque eléctrico.


La segunda función de un sistema de puesta a tierra es garantizar que, en el evento de una falla a tierra, toda corriente de falla que se origine, pueda retornar a la fuente de una forma controlada. Por una forma controlada  se entiende que la trayectoria de retorno está predeterminada, de tal modo que no ocurra daño al equipo o lesión a las personas. La conexión a tierra no es de capacidad infinita e impedancia nula. Sin embargo, la impedancia del sistema de tierra debiera ser lo bastante baja de modo que pueda fluir suficiente corriente de falla a tierra para que operen correctamente los dispositivos de protección, los cuales a su vez provocarán la operación de interruptores o fusibles para interrumpir el flujo de corriente.

Estas son las funciones que el sistema de puesta a tierra debe cumplir, pero se requiere que se adapten a una amplia variedad de problemas diferentes. El primero es una falla convencional, es decir, la aparición de un deterioro en un cable o la ruptura eléctrica de la aislación fase a tierra en una parte de un equipo. El equipo puede estar en una subestación, una industria o la casa. Llamamos a ésta una falla de “frecuencia industrial”, ya que la mayor parte de la energía disipada en la falla será a ésta frecuencia (50 Hz).

Métodos puesta a tierra

Se considerará la puesta a tierra de redes de potencia en primer lugar, ya que el método de puesta a tierra de estas redes influencia fuertemente el método subsiguiente escogido en el interior de construcciones. En teoría, la red principal de potencia no tiene que ser aterrizada (puesta a tierra) y algunas veces se argumenta que una red no aterrizada puede ser más confiable. En algunos casos esto puede ser verdad, pero en general, las redes no aterrizadas no son confiables debido a la sobre-solicitación de la aislación que rodea cables o líneas.  Esta solicitación puede surgir debido a estática, inducción o fallas intermitentes
Hay varias formas en las cuales puede operar el sistema de potencia: levantado de tierra, puesto a tierra con baja impedancia y puesto a tierra con alta impedancia. Estos son conceptos completamente diferentes y  para aquellos que están familiarizados con los conductores de tierra relativamente grandes y bajos valores de resistencia a tierra en sistemas tradicionales, el empleo de pequeños conductores de tierra y altas impedancias en otros sistemas puede llegar a ser una sorpresa. Estas diferentes técnicas se describen con más detalle a continuación.



 Puesta a tierra de sistemas de bajo voltaje y en el interior de locales

Tipos de sistemas
Existen ciertos métodos para efectuar una conexión a tierra, los cuales reciben definiciones estándares.  Cada uno se identifica por un código que contiene las siguientes letras:
T : tierra, conexión directa a tierra.
n: neutro
C : combinada
S : separada
TN-S En este tipo, el neutro de la fuente tiene un único punto de conexión a tierra en el transformador de alimentación. Los cables de alimentación tienen neutro separado del conductor de tierra de protección. Generalmente, el conductor de neutro es un cuarto “conductor” y el conductor de tierra forma una vaina o cubierta protectora . Este era el arreglo estándar antes de la introducción de los sistemas de puestas a tierra de protección múltiples.

CONDUCTORES DE TIERRA
Hay dos tipos principales de conductores de tierra: los conductores de protección (o de conexión) y los electrodos de tierra.

Conductores de conexión y conductores de protección

En las reglamentaciones, se han planteado diversas definiciones para describir los diferentes tipos de conductores de tierra usados. La aplicación práctica de estos conductores en instalaciones eléctricas se discutirá  nuevamente en el capítulo 8.  Los tipos son:


No hay comentarios:

Publicar un comentario